Abstract
The first experimentally determined sequential bond dissociation energies of Zn(2+)(H(2)O)(n) complexes, where n = 6-10, are measured using threshold collision-induced dissociation in a guided ion beam tandem mass spectrometer coupled with an electrospray ionization source. Kinetic energy dependent cross sections are obtained and analyzed to yield 0 K threshold measurements for the loss of one and two water ligands after accounting for multiple collisions, kinetic shifts, and energy distributions. The threshold measurements are then converted from 0 to 298 K values to give the hydration energies for sequentially losing one water from each parent complex. Theoretical geometry optimizations and single-point energy calculations are performed using several levels of theory for comparison to experiment. Although different levels of theory disagree on the ground-state conformation of most complexes examined here leading to potential ambiguities in the final thermochemical values, calculations at the MP2(full) level provide the best agreement with experiment. On this basis, the present experiments are most consistent with the inner solvent shell of Zn(2+) being five waters, except for Zn(2+)(H(2)O)(6) where all waters bind directly to the metal ion. The charge separation process, Zn(2+)(H(2)O)(n) --> ZnOH(+)(H(2)O)(m) + H(+)(H(2)O)(n-m-1), which is in competition with the loss of water from the parent complex, is also observed for n = 6-8. These processes are analyzed in detail in the following paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.