Abstract

Here, we report the concentration (0 ≤ wt. % ≤ 30) and temperature (293 ≤ T/K ≤ 318) dependent structural and dynamical changes in an aqueous solution of a triblock copolymer (Pluronic P123) using dielectric relaxation spectroscopy (DRS), covering a frequency regime, 0.2 ≤ ν/GHz ≤ 50. Remarkable existence of slow water molecules, ∼2 times slower than bulk type water, along with bulk-like water molecules has been detected in the present DR measurements. Differential scanning calorimetric measurements support this DR observation. The signature of the sol-gel phase transition (∼15.0 wt. %, 293 K) and temperature induced extensive dehydration (>60%) for P123 molecules, which are the other notable findings of the present work. Moreover, the rate of dehydration with temperature has been found to depend on the phase of the medium. However, dehydration follows a nonlinear pattern in both sol and gel phases. A subnanosecond (∼90 ps) component, possibly originating from the hydrogen bond relaxation dynamics of the terminal C-O-H of polymer chains, has also been observed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call