Abstract

The degree of hydration of the four major anhydrous cement phases in three U.K. portland cement mortars has been observed during the period of water storage at room temperature after an initial short-term heat cure. Such a heat cure at 85° or 100°C for 12 h generally accelerated the initial hydration of the four major anhydrous minerals in portland cement. Subsequent retardation of the degree of hydration of the alite, tricalcium aluminate, and ferrite phases was observed when these heat-cured mortars were stored at ambient temperature. General similarity but some differences in hydration behavior were observed between the three cements. The hydration of belite in the heat-cured mortars during storage at room temperature produced porous inner products that favored deposition of ettringite and reduced the risk of expansive ettringite formation. The substantial retardation in hydration of the aluminate-bearing phases, especially the ferrite phase, during the storage at room temperature raised the overall SO3/Al2O3 ratio of the cement hydrates formed, bringing about a potential for ettringite formation and hence the risk of expansion through delayed ettringite formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.