Abstract

By using a 27-MHz piezoelectric quartz oscillator connected with a vector network analyzer, we obtained resonance frequency decreases (-DeltaFwater) and energy dissipation increases (DeltaDwater) during binding of biotinylated bovine serum albumin, biotinylated ssDNA, biotinylated dsDNA, and biotinylated pullulan to a NeutrAvidin-immobilized 27-MHz quartz crystal microbalance (QCM) plate in aqueous solution, as well as in the wet air phase (98% humidity, -DeltaFwet and DeltaDwet) and in the dry air phase (-DeltaFair and DeltaDair). -DeltaFwater indicates the total mass of the molecule, bound water, and vibrated water in aqueous solutions. -DeltaFwet indicates the total mass of the molecule and bound water. -DeltaFair simply shows the real mass of the molecule on the QCM. In terms of results, (-DeltaFwet)/(-DeltaFair) values indicated the bound water ratios per unit biomolecular mass were on the order of pullulan (2.1-2.2) > DNAs = proteins (1.4-1.6) > polystyrene (1.0). The (-DeltaFwater)/(-DeltaFair) values indicated the hydrodynamic water (bound and vibrated water) ratios per unit biomolecular mass were on the order of dsDNA (6.5) > ssDNA = pullulan (3.5-4.4) > proteins (2.4-2.5) > polystyrene (1.0). Energy dissipation parameters per unit mass in water (DeltaDwater/(-DeltaFair)) were on the order of pullulan > dsDNA > ssDNA > proteins > polystyrene. Energy dissipation in the wet and dry air phases (DeltaDwet and DeltaDair) were negligibly small, which indicates even these biomolecules act as elastic membranes in the air phase (without aqueous solution). We obtained a good linear relationship between [(-DeltaFwater)/(-DeltaFair) - 1], which is indicative of hydration and DeltaDwater/(-DeltaFair) of proteins. The aforementioned values suggest that the energy dissipation of proteins was mainly caused by hydration and that proteins themselves are elastic molecules without energy dissipation in aqueous solutions. On the contrary, plots in cases of denatured proteins, DNAs, and pullulans were relatively deviant toward the large hydration and energy dissipation from the theoretical line as perfect elastic materials, meaning that the large energy dissipation occurs because of viscoelastic properties of denatured proteins, linear DNAs, and pullulans in the water phase, in addition to energy dissipation due to the hydration of molecules. These two parameters could characterize various biomolecules with structural properties in aqueous solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.