Abstract
Aqueous solutions of sodium l-glutamate (NaGlu) in the concentration range 0 < c/M ≤ 1.90 at 25 °C were investigated by dielectric relaxation spectroscopy (DRS) and statistical mechanics (1D-RISM and 3D-RISM calculations) to study the hydration and dynamics of the l-glutamate (Glu-) anion. Although at c → 0 water molecules beyond the first hydration shell are dynamically affected, Glu- hydration is rather fragile and for c ⪆ 0.3 M apparently restricted to H2O molecules hydrogen bonding to the carboxylate groups. These hydrating dipoles are roughly parallel to the anion moment, leading to a significantly enhanced effective dipole moment of Glu-. However, l-glutamate dynamics is determined by the rotational diffusion of individual anions under hydrodynamic slip boundary conditions. Thus, the lifetime of the hydrate complexes, as well as of possibly formed [Na+Glu-]0 ionpairs and l-glutamate aggregates, cannot exceed the characteristic timescale for Glu- rotation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.