Abstract

Deadlegs in oil and gas production systems often encounter hydrate plugs by deposition. Temperature is generally known to be an important variable in hydrate formation, but the effects in deadlegs are not exactly known. This study focuses on the effects of the header temperature on the hydrate deposition in gas-filled vertical deadlegs at constant wall temperature. All experiments are conducted with a methane/ethane gas mixture at constant pressure. The pipe wall temperature is kept constant while considering different header temperatures. The tests show that the header temperature has a significant impact in the hydrate deposit growth rate and distribution in the deadleg. It is also found that the hydrate deposit can, in turn, change the temperature field inside the pipe. The header temperature or the pipe temperature field can be used to estimate the hydrate distribution in the deadleg. Under the right conditions, hydrates can form a restriction in the deadleg and its location is usually close to the bo...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.