Abstract

Hydrate deposition is a major concern in the oil and gas industry. This paper studies the hydrate deposition mechanisms in water-in-oil (W/O) emulsion systems using a high-pressure flow loop. The experimental results indicate that the hydrate deposition process can be divided into four stages: the initial formation and deposition, deposit sloughing, secondary formation and redeposition, and deposit annealing. For the first time, a method to quantify hydrate deposits is proposed. The results show that a low temperature, high pressure, high additive concentration, and low water cut decrease the amount of hydrate deposits. The hydrate deposition amount first increase and then decrease with an increasing flow rate. The experimental results demonstrate that the hydrate deposition process is affected by the hydrate formation driving force, wall surface properties, adhesive water amount, mass-transfer coefficient, and flow shear force.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.