Abstract
Marine vertical cable seismic (VCS) collects seismic waves by hydrophone array vertically suspended in seawater to prospect the offshore geological structure and monitor the reservoir. Due to its irregular source-receiver geometry, the primary imaging has narrow illustration coverage. Here, we proposed a cross-correlation transformation based on ghost wave interferometry. This method can transform the ghost reflections from the vertical cable seismic profile into the virtual surface seismic primaries just like those excited by the source and recorded by marine seismic towed-streamer below sea surface. After processing these virtual primaries with conventional method, we can obtain the ghost reflection imaging section with high resolution which effectively extend the illustration footprints in the subsurface. By application of this transform, virtual primaries are generated from the first-order ghost reflections of the actual VCS data. Then, migration of these virtual primaries provides a high-resolution image of hydrate-bearing sediments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.