Abstract

Carbons with specific morphologies, compositions and structures have aroused scientific and technological interest due to their intriguing and overwhelming properties for multi-purpose applications. Herein, a novel route to convert Knoevenagel copolymer into hydrangea-like, N/O codoped, and high-surface-area porous carbon (HPC) spheres with excellent supercapacitive performances is presented. By crosslinking p-phenylenediacetonitrile with two aromatic aldehyde co-monomers, as-prepared material exhibits a unique architecture of intertwined nanosheets uniformly self-assembled on the surfaces of microporous spheres. Featuring a large adsorbing platform (1963 m2 g−1), multi-scale pore structure and diverse N/O functional groups, HPC electrode carbonized-activated at the optimal temperature of 700 °C yields a prominent capacitance of 330 F g−1 at 1 A g−1, along with a satisfactory rate capability of 221 F g−1 at 20 A g−1 in KOH electrolyte. More importantly, taking advantage of a refined interphase between the high-concentration water-in-salt Li-TFSI layer and the ion-accessible hydrangea surface, HPC-based supercapacitor gives a higher energy delivery of 32.9 Wh kg−1 at 575 W kg−1 than the common devices using KOH (10.93 Wh kg−1 at 100 W kg−1) and Na2SO4 (24.9 Wh kg−1 at 180 W kg−1), with high-voltage aqueous durability of 90.5% retention over 10,000 cycles at 2.3 V. This inspiring work enriches the methodology for fabricating functionalized carbon spheres that are expected to boom diverse applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.