Abstract

Simple SummarySolid tumors are highly immunosuppressive and develop multiple inhibitory mechanisms that must be targeted simultaneously for successful cancer immunotherapy. Adenoviral vectors are promising cancer gene therapy vectors due to their inherent ability to stimulate multiple immune pathways. Adenoviruses are well characterized, and their genomes are easily manipulated, allowing for therapeutic transgene expression. Oncolytic adenoviruses are engineered to replicate specifically in malignant cells, resulting in cancer cell lysis. However, oncolytic adenoviral vectors have limited transgene capacity. Helper-dependent adenoviral vectors have been developed with the capability of expressing multiple transgenes through removal of all viral coding sequences. We have developed a helper-dependent platform for cancer immunotherapy and demonstrate expression of up to four functional transgenes. This platform allows us to target tumors with specific inhibitory pathways using our library of immunomodulatory transgenes in a mix-and-match approach for a synchronized cancer immunotherapy strategy.For decades, Adenoviruses (Ads) have been staple cancer gene therapy vectors. Ads are highly immunogenic, making them effective adjuvants. These viruses have well characterized genomes, allowing for substantial modifications including capsid chimerism and therapeutic transgene insertion. Multiple generations of Ad vectors have been generated with reduced or enhanced immunogenicity, depending on their intended purpose, and with increased transgene capacity. The latest-generation Ad vector is the Helper-dependent Ad (HDAd), in which all viral coding sequences are removed from the genome, leaving only the cis-acting ITRs and packaging sequences, providing up to 34 kb of transgene capacity. Although HDAds are replication incompetent, their innate immunogenicity remains intact. Therefore, the HDAd is an ideal cancer gene therapy vector as its infection results in anti-viral immune stimulation that can be enhanced or redirected towards the tumor via transgene expression. Co-infection of tumor cells with an oncolytic Ad and an HDAd results in tumor cell lysis and amplification of HDAd-encoded transgene expression. Here, we describe an HDAd-based cancer gene therapy expressing multiple classes of immunomodulatory molecules to simultaneously stimulate multiple axes of immune pathways: the HydrAd. Overall, the HydrAd platform represents a promising cancer immunotherapy agent against complex solid tumors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call