Abstract
Robust vision restoration of underwater images remains a challenge. Owing to the lack of well-matched underwater and in-air images, unsupervised methods based on the cyclic generative adversarial framework have been widely investigated in recent years. However, when using an end-to-end unsupervised approach with only unpaired image data, mode collapse could occur, and the color correction of the restored images is usually poor. In this paper, we propose a data- and physics-driven unsupervised architecture to perform underwater image restoration from unpaired underwater and in-air images. For effective color correction and quality enhancement, an underwater image degeneration model must be explicitly constructed based on the optically unambiguous physics law. Thus, we employ the Jaffe-McGlamery degeneration theory to design a generator and use neural networks to model the process of underwater visual degeneration. Furthermore, we impose physical constraints on the scene depth and degeneration factors for backscattering estimation to avoid the vanishing gradient problem during the training of the hybrid physical-neural model. Experimental results show that the proposed method can be used to perform high-quality restoration of unconstrained underwater images without supervision. On multiple benchmarks, the proposed method outperforms several state-of-the-art supervised and unsupervised approaches. We demonstrate that our method yields encouraging results in real-world applications.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.