Abstract

AbstractThe equations that govern the dynamic response of saturated porous media are first discretized in time to define the boundary value problem that supports the formulation of the hybrid‐Trefftz stress element. The (total) stress and pore pressure fields are directly approximated under the condition of locally satisfying the domain conditions of the problem. The solid displacement and the outward normal component of the seepage displacement are approximated independently on the boundary of the element. Unbounded domains are modelled using either unbounded elements that locally satisfy the Sommerfeld condition or absorbing boundary elements that enforce that condition in weak form. As the finite element equations are derived from first‐principles, the associated energy statements are recovered and the sufficient conditions for the existence and uniqueness of the solutions are stated. The performance of the element is illustrated with the time domain response of a biphasic unbounded domain to show the quality of the modelling that can be attained for the stress, pressure, displacement and seepage fields using a high‐order, wavelet‐based time integration procedure. Copyright © 2010 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.