Abstract

The misfolding and aggregation of α-Syn are the central mechanism linking and facilitating the other pathological mechanisms of PD. Maintaining α-Syn proteostasis by suitable inhibitors is an effective means to prevent PD. Disintegrating the neurotoxic oligomers and fibrils into the normal functional α-Syn by inhibitors is a more efficient way for PD treatment. This work synthesized two series hybrids of polyphenolic acids and xanthone. The hybrids possess a sheet-like conjugated skeleton and higher binding energies with α-Syn residues. Some compounds present well α-Syn aggregation inhibitory activities in vitro (IC50 down to 2.58 μM). The inhibitory action goes throughout the aggregation process from lag to the stationary phase by stabilizing α-Syn proteostasis conformation and preventing β-sheets aggregation. The candidate compounds with appropriate LogP values (2.02–3.11) present good disintegration abilities against the existed α-Syn oligomers and fibrils. The preliminary mechanism studies suggest that the inhibitors could quickly and randomly bind to the specific site closed to the β-sheet domain in the fibril, resulting in unstable and collapse of the protein fibril, yielding a complex system with aggregates of different sizes and monomers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.