Abstract

Abstract Fuel Cells based in polymers are an alternative for the conventional energetic matrices. However, materials currently available still present disadvantages to overcome. Membranes of polycarbonate (PC)/sulfonated polycarbonate (PCs) blend/sepiolite nanocomposites have previously been studied by the authors, resulting in good mechanical properties and promising properties of vapor transmission and ionic migration resistance. However, their production in large scale is still a challenge. The aim of this work was the development further the formulation and processing of the previously studied material. Films of PC/PCs blends (50/50 wt%) with different content of sepiolite clay, with and without chemical modification, have been prepared in an extruder and evaluated by FTIR, XRD, DSC, TGA, DMA, tension strength and water vapor transmission (WVT). Even after two processing steps, the blend-based nanocomposites keep good thermal and mechanical properties. However, changes in WVT were observed with respect to data obtained in previous studies.

Highlights

  • Fuel cells are considered the future of clean sustainable energy, besides being considered the step to be overcome for the development and application of all new Technologies

  • This electrolyte can be a polymeric membrane, which has as advantages the possibility of lower temperature applications, leading to a faster start of the system, smaller thickness for mounting and less weight of device, implicating in smaller and portable fuel cells, among other improvements

  • Membranes of nanocomposites blends of PC/PCs with sepiolite were produced with good optical properties, good mechanical resistance and with maintenance of the sulfone sites, as detected by FTIR and thermal analysis

Read more

Summary

Introduction

Fuel cells are considered the future of clean sustainable energy, besides being considered the step to be overcome for the development and application of all new Technologies. Fuel cells work oxidizing fuel at the anode, releasing electrons that are transported through an electrolyte to the cathode, where they react generating a byproduct and releasing heat. This electrolyte can be a polymeric membrane, which has as advantages the possibility of lower temperature applications, leading to a faster start of the system, smaller thickness for mounting and less weight of device, implicating in smaller and portable fuel cells, among other improvements. There are the mechanical, thermal and electrochemical degradation of the polymeric membranes[1,2,3]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call