Abstract

AbstractHere, the impact of copper and oxygen vacancy balance in filament composition as a key factor for oxide‐based conductive bridge random access memories (hybrid resistive random access memories (HRRAMs)) performances is investigated. To this aim, several RRAM technologies are studied using various resistive layers and top electrodes. Material analyses allow to highlight the hybrid aspect of HRRAM conductive filament. Density functional theory simulations are used to extract microscopic features and highlight differences from a material point of view. Integrated RRAM technology performances such as window margin, endurance, and retention are then measured to analyze copper and oxygen vacancy influence on device characteristics. A new RRAM classification correlating filament composition and memory performances is proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.