Abstract

AbstractGlycans are the major components of the cellular membranes and mediate many cellular processes via their interactions with lectins. A kinetic Monte Carlo (kMC) model was proposed previously to incorporate the key features of glycan‐lectin interactions such as multivalency and glycan diffusion, and its accuracy has been validated by experiments. However, computational cost of the kMC model is its major bottleneck. In this study, a hybrid model combining a partial differential equation (PDE) with the kMC model is proposed to greatly reduce the computational cost while preserving the accuracy. Specifically, glycan diffusion is simulated by the PDE for improving computational efficiency since the glycan diffusion execution through the kMC is computationally expensive. The hybrid PDE‐kMC model is employed to simulate the binding dynamics between cholera toxin subunit B and gangliosides on cellular membranes. The accuracy and efficiency of the proposed model was demonstrated by comparing with the sole kMC model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call