Abstract

Reservoir computers (RCs) are powerful machine learning architectures for time series prediction. Recently, next generation reservoir computers (NGRCs) have been introduced, offering distinct advantages over RCs, such as reduced computational expense and lower training data requirements. However, NGRCs have their own practical difficulties, including sensitivity to sampling time and type of nonlinearities in the data. Here, we introduce a hybrid RC-NGRC approach for time series forecasting of dynamical systems. We show that our hybrid approach can produce accurate short-term predictions and capture the long-term statistics of chaotic dynamical systems in situations where the RC and NGRC components alone are insufficient, e.g., due to constraints from limited computational resources, sub-optimal hyperparameters, sparsely sampled training data, etc. Under these conditions, we show for multiple model chaotic systems that the hybrid RC-NGRC method with a small reservoir can achieve prediction performance approaching that of a traditional RC with a much larger reservoir, illustrating that the hybrid approach can offer significant gains in computational efficiency over traditional RCs while simultaneously addressing some of the limitations of NGRCs. Our results suggest that the hybrid RC-NGRC approach may be particularly beneficial in cases when computational efficiency is a high priority and an NGRC alone is not adequate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.