Abstract
One of the major activities of financial firms and private investors is to predict future prices of stocks. However, stock index prediction is regarded as a challenging task of the prediction problem since the stock market is a complex, chaotic and nonlinear dynamic system. As stock markets are highly dynamic and exhibit wide variation, it may be more realistic and practical that assumed the stock index data are a nonlinear mixture data. In this study, a hybrid stock index prediction model by utilizing nonlinear independent component analysis (NLICA), support vector regression (SVR) and particle swarm optimization (PSO) is proposed. In the proposed model, first, the NLICA is used to deal with the nonlinearity property of the stock index data. The proposed model utilizes NLICA to extract features from the observed stock index data. The features which can be used to represent underlying/hidden information of the data are then served as the inputs of SVR to build the stock index prediction model. Finally, PSO is applied to optimize the parameters of the SVR prediction model since the parameters of SVR must be carefully selected in establishing an effective and efficient SVR model. In order to evaluate the performance of the proposed approach, the closing indexes of the Taiwan stock exchange capitalization weighted stock index, Shanghai stock exchange composite index and Bombay stock exchange index are used as illustrative examples. Experimental results showed that the proposed hybrid stock index prediction method significantly outperforms the other six comparison models. It is an efficient and effective alternative for stock index forecasting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.