Abstract
Various algorithms, including particle swarm optimization (PSO), genetic algorithm (GA), ant colony algorithm (AC), cuckoo search (CS) algorithm, and firefly algorithm (FA) have been introduced to help optimize artificial neural networks (ANNs), speed up convergence and iteration rates, and escape from trapping into local optimum. However, despite the capabilities of these algorithms, it is only GA that has been utilized in the mass appraisal of properties. Therefore, in order to deal with problems of inconsistencies in appraisal/valuation estimates that sometimes occur during predictions, CS, a meta-heuristic algorithm is introduced into the mass appraisal industry. The proposed algorithm is combined with Levenberg-Marquardt (LM) and back propagation (BP) algorithms to test their effectiveness in the prediction of property values. We analyzed a dataset of 3,494 property transactions from the city of Cape Town, South Africa. The results indicate that CSLM and CSBP outperformed standalone the conventional BP algorithm in optimizing and training of ANN for mass appraisal of properties. This is reflected in the minimal error matrices predicted by both CSLM and CSBP algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.