Abstract

Formation of densely packed thin films of semiconductor nanocrystals is advantageous for the exploitation of their unique optoelectronic properties for real-world applications. Here we investigate the fundamental role of the structure of the bridging ligand on the optoelectronic properties of the resulting hybrid film. In particular, we considered hybrid films formed using the same CdSe nanocrystals and two organic ligands that have the same bidentate dithiocarbamate binding moiety, but differ in their bridging structures, one bridged by ethylene, the other by phenylene that exhibits conjugation. Based on the results of photo-excited carrier dynamics experiments combined with theoretical calculations on the electronic states of bridged CdSe layers, we show that only the phenylene-based ligand presents a strong hybridization of the molecular HOMO state with CdSe layers, that is a marker of formation of an effective bridge. We argue that this hybridization spread favors the hopping of photo-excited carriers between nanocrystals, which may explain the reported larger photo-currents in phenylene-based hybrid films than those observed in ethylene-based ones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.