Abstract

In this paper, we propose a new hybridized discontinuous Galerkin (DG) method for the convection-diffusion problems with mixed boundary conditions. A feature of the proposed method, is that it can greatly reduce the number of globally-coupled degrees of freedom, compared with the classical DG methods. The coercivity of a convective part is achieved by adding an upwinding term. We give error estimates of optimal order in the piecewise H 1-norm for general convection-diffusion problems. Furthermore, we prove that the approximate solution given by our scheme is close to the solution of the purely convective problem when the viscosity coefficient is small. Several numerical results are presented to verify the validity of our method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.