Abstract

Optimization of large‐scale injection‐based remedial systems requires engineering to intentionally capitalize on the biological, chemical, and physical mechanisms that occur within and between the zones of reagent application. These types of systems can be called hybrid designs as they employ multiple processes to achieve remediation endpoints (Figure 1), resulting in optimized system performance and a reduction in the overall life‐cycle cost. While all remedial applications incorporate these mechanisms to some extent, the importance of each of these processes is magnified in large‐scale applications. This column discusses the dominant mechanisms responsible for mass reduction within both source and distal plume footprints, with a focus on the application of “Hybridized Design” for enhanced reductive dechlorination (ERD) systems. Diagram showing the hybrid design approach which encompasses physical (sorption, advection, diffusion), chemical (mass flux, abiotic degradation) and biological (metabolic and cometabolic degradation) processes. image

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.