Abstract

BackgroundGeneralized Joint Hyper-mobility (GJH) can aid in the diagnosis of Ehlers-Danlos Syndrome (EDS), a complex genetic connective tissue disorder with clinical features that can mimic other disease processes. Our study focuses on developing a unique image-based goniometry system, the HybridPoseNet, which utilizes a hybrid deep learning model.ObjectiveThe proposed model is designed to provide the most accurate joint angle measurements in EDS appraisals. Using a hybrid of CNNs and HyperLSTMs in the pose estimation module of HybridPoseNet offers superior generalization and time consistency properties, setting it apart from existing complex libraries.MethodologyHybridPoseNet integrates the spatial pattern recognition prowess of MobileNet-V2 with the sequential data processing capability of HyperLSTM units. The system captures the dynamic nature of joint motion by creating a model that learns from individual frames and the sequence of movements. The CNN module of HybridPoseNet was trained on a large and diverse data set before the fine-tuning of video data involving 50 individuals visiting the EDS clinic, focusing on joints that can hyperextend. HyperLSTMs have been incorporated in video frames to avoid any time breakage in joint angle estimation in consecutive frames. The model performance was evaluated using Spearman’s coefficient correlation versus manual goniometry measurements, as well as by the human labeling of joint position, the second validation step.OutcomePreliminary findings demonstrate HybridPoseNet achieving a remarkable correlation with manual Goniometric measurements: thumb (rho = 0.847), elbows (rho = 0.822), knees (rho = 0.839), and fifth fingers (rho = 0.896), indicating that the newest model is considerably better. The model manifested a consistent performance in all joint assessments, hence not requiring selecting a variety of pose-measuring libraries for every joint. The presentation of HybridPoseNet contributes to achieving a combined and normalized approach to reviewing the mobility of joints, which has an overall enhancement of approximately 20% in accuracy compared to the regular pose estimation libraries. This innovation is very valuable to the field of medical diagnostics of connective tissue diseases and a vast improvement to its understanding.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.