Abstract

Alzheimer's disease (AD) is mainly a neurodegenerative sickness. The primary characteristics are neuronal atrophy, amyloid deposition, and cognitive, behavioral, and psychiatric disorders. Numerous machine learning (ML) algorithms have been investigated and applied to AD identification over the past decades, emphasizing the subtle prodromal stage of mild cognitive impairment (MCI) to assess critical features that distinguish the disease's early manifestation and instruction for early detection and treatment. Identifying early MCI (EMCI) remains challenging due to the difficulty in distinguishing patients with cognitive normality from those with MCI. As a result, most classification algorithms for these two groups perform poorly. This paper proposes a hybrid Deep Learning Approach for the early detection of Alzheimer's disease. A method for early AD detection using multimodal imaging and Convolutional Neural Network with the Long Short-term memory algorithm combines magnetic resonance imaging (MRI), positron emission tomography (PET), and standard neuropsychological test scores. The proposed methodology updates the learning weights, and Adam's optimization is used to increase accuracy. The system has an unparalleled accuracy of 98.5% in classifying cognitively normal controls from EMCI. These results imply that deep neural networks may be trained to automatically discover imaging biomarkers indicative of AD and use them to identify the illness accurately.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.