Abstract

Four 12-mer oligodeoxyribonucleotide sequences were immobilized to uniformly sized (50 microm) polymer particles through C5-tethered thymine and N(4)-tethered cytosine bases at four different sites in each sequence. The effect of the site of immobilization on the efficiency and selectivity of hybridization of the particle-bound probes was quantified by a sandwich-type assay based on a time-resolved fluorometric measurement of an oligonucleotide probe labeled with a photoluminescent europium(III) chelate directly from the surface of a single particle. Immobilization through a base in the central part of the sequence was observed to destablize the duplex more markedly than tethering through a terminal base. The effect of a one-base mismatch on the duplex stability increased with the increasing distance from the site of immobilization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.