Abstract
Correns's 1903 (Berichte der Deutschen Botanischen Gesellschaft 21: 133-147) crosses between a monoecious and a dioecious species of Bryonia revealed the simple Mendelian inheritance of dioecy and provided the first instance of an XY sex determination system in any organism. Bryonia ranges from the Canary Islands to Central Asia and comprises seven dioecious and three monoecious species; its closest relative, Ecballium elaterium, has dioecious and monoecious populations. We used chloroplast (cp) and nuclear (nr) gene phylogenies to infer sexual system evolution in Bryonia. We also tested for associations between sexual system and ploidy level, based on published and original chromosome counts. Conflicts between cp and nr topologies imply that the dioecious hexaploid B. cretica arose from hybridization(s), probably involving the dioecious diploids B. dioica, B. syriaca, and/or B. multiflora. A tetraploid dioecious endemic on Corsica and Sardinia probably originated from B. dioica via autopolyploidy. While the cp phylogeny resolves few species relationships, the nr tree implies at least two evolutionary changes in sexual system. There is no correlation between sexual system and ploidy level. Molecular clocks suggest that the deepest divergence, between a species on the Canary Islands and the ancestor of all remaining species, occurred ca. 10 million years ago.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.