Abstract
Abstract This paper discusses benefits of introducing an ultracapacitor (UC) bank into a battery electric vehicle (BEV) powertrain. The case of 12kWh LiFePO4 battery pack is studied quantitatively. Simulation results refer, inter alia, to three main scenarios: fresh cells, half-used battery cells, and half-used ultracapacitors and batteries. Thermal modeling is incorporated into the simulation. Data from real world are considered: various driving cycles recorded using GPS receiver (incl. elevation), discharge curves from battery manufacturer, and UC equivalent series resistance (ESR) variations due to cycling according to real data reported in papers. Cost, as well as gravimetric and volumetric issues are presented. The key decisions referring to an energy storage for BEV being currently designed within the frame of ECO-Mobility Project are highlighted.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Bulletin of the Polish Academy of Sciences: Technical Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.