Abstract

The formation of ultralong-range Rydberg molecules is a result of the attractive interaction between a Rydberg electron and a polarizable ground-state atom in an ultracold gas. In the nondegenerate case, the backaction of the polarizable atom on the electronic orbital is minimal. Here we demonstrate how controlled degeneracy of the respective electronic orbitals maximizes this backaction and leads to stronger binding energies and lower symmetry of the bound dimers. Consequently, the Rydberg orbitals hybridize due to the molecular bond.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call