Abstract

The thermodynamics of hybridization and the conformations of decameric mixed purine-pyrimidine sequence PNA/PNA, PNA/DNA, and DNA/DNA duplexes have been studied using fluorescence energy transfer (FET), absorption hypochromicity (ABS), isothermal titration calorimetry (ITC), and circular dichroism (CD) techniques. The interchromophoric distances determined in the FET experiments on fluorescein- and rhodamine-labeled duplexes indicate that the solution structures of the duplexes are extended helices in agreement with available NMR (PNA/DNA) and crystal X-ray data (PNA/PNA). The melting thermodynamics of the duplexes was studied with both FET and ABS. The thermodynamic parameters obtained with ABS are in good agreement with the parameters from calorimetric measurements while FET detection of duplex melting gives in most cases more favorable free energies of hybridization. This discrepancy between FET and ABS detection is ascribed to the conjugated dyes which affect the stability of the duplexes substantially. Especially, the dianionic fluorescein attached via a flexible linker either to PNA or to DNA seems to be involved in an attractive interaction with the opposite dicationic lysine when hybridized to a PNA strand. This interaction leads to an increased thermal stability as manifested as a 3-4 degreesC increase of the melting temperature. For the PNA/DNA duplex where fluorescein is attached to the PNA strand, a large destabilization (DeltaTm = -12 degreesC) occurs relative to the unlabeled duplex, probably originating from electrostatic repulsion between the fluorescein and the negatively charged DNA backbone. In the case of the PNA/PNA duplex, the sense of helicity of the duplex is reversed upon conjugation of fluorescein via a flexible linker arm, but not when the fluorescein is attached without a linker to the PNA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.