Abstract

The electrical conductivity and charge carrier mobility of reduced graphene oxide (RGO) based 3D aerogel using graphene oxide (GO) as precursor is often restricted by the intrinsic population of defects and thus disruption of 2D π-conjugation in the domain of RGO sheets. Here, we report a facile and efficient approach to improve the electrical conductivity of RGO aerogel by introducing highly conductive commercial Elicarb graphene (EGR). GO acting as a “macromolecular surfactant” can be used to simultaneously resolve the intrinsic drawback of low solution dispersibility of EGR and provides the basic skeleton for solution-processable synthesis of RGO@EGR-Eosin Y (RGO@EGR-EY) metal-free 3D aerogel composites. The as-synthesized RGO@EGR-EY aerogel with superior electrical conductivity facilitates more efficient separation and transfer of photogenerated charge carriers, and consequently exhibits much higher photocatalytic activity than RGO-EY aerogel. It is hoped that our current work could open promising prospects for the rational utilization of highly conductive commercial graphene to fabricate graphene-based aerogel for enhanced photoredox applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.