Abstract

The guanine quadruplex (G-quadruplex) is a highly stable secondary structure that forms in G-rich repeats of DNA, which can interfere with DNA processes, including DNA replication and transcription. We showed previously that short guanine-rich peptide nucleic acids (PNAs) can form highly stable hybrid quadruplexes with DNA. We hypothesized that such structures would provide a stronger block to polymerase extension on G-rich templates than a native DNA homoquadruplex because of the greater thermodynamic stability of the PNA-DNA hybrid structures. To test this, we analyzed the DNA primer extension activity of polymerase η, a translesion polymerase implicated in synthesis past G-quadruplex blocks, on DNA templates containing guanine repeats. We observed a PNA concentration-dependent decrease in the level of polymerase η extension to the end of the template and an increase in the level of polymerase η inhibition at the sequence prior to the G-rich repeats. In contrast, the addition of a complementary C-rich PNA that hybridizes to the G-rich repeats by Watson-Crick base pairing led to a decrease in the level of polymerase inhibition and an increase in the level of full-length extension products. The G-quadruplex-forming PNA exhibited inhibition (IC50=16.2±3.3 nM) of polymerase η DNA synthesis on the G-rich templates stronger than that of the established G-quadruplex-stabilizing ligand BRACO-19 (IC50=42.5±4.8 nM). Our results indicate that homologous PNA targeting of G-rich sequences creates stable PNA-DNA heteroquadruplexes that inhibit polymerase η extension more effectively than a DNA homoquadruplex. The implications of these results for the potential development of homologous PNAs as therapeutics for halting proliferating cancer cells are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.