Abstract
Abstract The present work proposes hybridization of Expectation-Maximization (EM) and K-means techniques as an attempt to speed-up the clustering process. Even though both the K-means and EM techniques look into different areas, K-means can be viewed as an approximate way to obtain maximum likelihood estimates for the means. Along with the proposed algorithm for hybridization, the present work also experiments with the Standard EM algorithm. Six different datasets, three of which synthetic datasets, are used for the experiments. Clustering fitness and Sum of Squared Errors (SSE) are computed for measuring the clustering performance. In all the experiments it is observed that the proposed algorithm for hybridization of EM and K-means techniques is consistently taking less execution time with acceptable Clustering Fitness value and less SSE than the standard EM algorithm. It is also observed that the proposed algorithm is producing better clustering results than the Cluster package of Purdue University.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.