Abstract

The phenomenon of hybridization of the backward acoustic waves propagating in a piezoelectric crystal plate has been studied. In an electrically free plate (in particular, of potassium niobate) with a crystal orientation for which a sagittal plane is the symmetry plane, the dispersion curves of backward acoustic waves exhibit points of intersection and hybridization is absent. However, for a small change in the direction of wave propagation, the dispersion curves exhibit “repulsion” and the waves become coupled. The degree of hybridization is quantitatively evaluated in terms of the hybridization coefficient, which is defined as the ratio of the total mutual energy density and the total energy density of the interacting waves. It is demonstrated that the extent of repulsion of the dispersion curves for the interacting waves is determined by the dependence of the hybridization coefficient on the product of the plate thickness and the wave frequency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.