Abstract
Multi-objective differential evolution (MODE) algorithm has been widely used in solving multi-objective optimization problems. In this paper, a hybridization technique is proposed to improve the performance of MODE algorithm in terms of speed and convergence. The proposed hybrid MODE-dynamic-random local search (HMODE-DLS) algorithm combines MODE and dynamic-random local search (DLS) algorithm. To evaluate the proposed algorithm and validate its performance, benchmark test problems (both constrained and non-constrained) are considered to be solved using MODE and the proposed HMODE-DLS algorithms. To compare between the two algorithms, five performance metrices are calculated, which are convergence, spread, generational distance, spacing and hypervolume ratio. Mean and standard deviation values for the performance metrics are reported, and the best in each category is highlighted. The Conv metric results of the new hybrid MODE are compared with other reported ones. Additionally, the effect of local search probability is studied for selected problems. In general, HMODE-DLS performance outshines, in terms of convergence and robustness, compared with other tested algorithms. HMODE-DLS is, generally, faster, and its results are of improved quality compared to MODE algorithm.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.