Abstract

Multi-objective differential evolution (MODE) algorithm has been widely used in solving multi-objective optimization problems. In this paper, a hybridization technique is proposed to improve the performance of MODE algorithm in terms of speed and convergence. The proposed hybrid MODE-dynamic-random local search (HMODE-DLS) algorithm combines MODE and dynamic-random local search (DLS) algorithm. To evaluate the proposed algorithm and validate its performance, benchmark test problems (both constrained and non-constrained) are considered to be solved using MODE and the proposed HMODE-DLS algorithms. To compare between the two algorithms, five performance metrices are calculated, which are convergence, spread, generational distance, spacing and hypervolume ratio. Mean and standard deviation values for the performance metrics are reported, and the best in each category is highlighted. The Conv metric results of the new hybrid MODE are compared with other reported ones. Additionally, the effect of local search probability is studied for selected problems. In general, HMODE-DLS performance outshines, in terms of convergence and robustness, compared with other tested algorithms. HMODE-DLS is, generally, faster, and its results are of improved quality compared to MODE algorithm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call