Abstract

Interspecific hybridization may act as a major force contributing to the evolution of biodiversity. Although generally thought to reduce or constrain divergence between 2 species, hybridization can, paradoxically, promote divergence by increasing genetic variation or providing novel combinations of alleles that selection can act upon to move lineages toward new adaptive peaks. Hybridization may, then, play a key role in adaptive radiation by allowing lineages to diversify into new ecological space. Here, we test for signatures of historical hybridization in the Anolis lizards of Puerto Rico and evaluate 2 hypotheses for the role of hybridization in facilitating adaptive radiation-the hybrid swarm origins hypothesis and the syngameon hypothesis. Using whole genome sequences from all 10 species of Puerto Rican anoles, we calculated D and f-statistics (from ABBA-BABA tests) to test for introgression across the radiation and employed multispecies network coalescent methods to reconstruct phylogenetic networks that allow for hybridization. We then analyzed morphological data for these species to test for patterns consistent with transgressive evolution, a phenomenon in which the trait of a hybrid lineage is found outside of the range of its 2 parents. Our analyses uncovered strong evidence for introgression at multiple stages of the radiation, including support for an ancient hybrid origin of a clade comprising half of the extant Puerto Rican anole species. Moreover, we detected significant signals of transgressive evolution for 2 ecologically important traits, head length and toepad width, the latter of which has been described as a key innovation in Anolis. [Adaptive radiation; introgression; multispecies network coalescent; phenotypic evolution; phylogenetic network; reticulation; syngameon; transgressive segregation.].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.