Abstract

Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant disease involving shortening of D4Z4, an array of tandem 3.3-kb repeat units on chromosome 4. These arrays are in subtelomeric regions of 4q and 10q and have 1-100 units. FSHD is associated with an array of 1-10 units at 4q35. Unambiguous clinical diagnosis of FSHD depends on determining the array length at 4q35, usually with the array-adjacent p13E-11 probe after pulsed-field or linear gel electrophoresis. Complicating factors for molecular diagnosis of FSHD are the phenotypically neutral 10q D4Z4 arrays, cross-hybridizing sequences elsewhere in the genome, deletions including the genomic p13E-11 sequence and part of D4Z4, translocations between 4q and 10q D4Z4 arrays, and the extremely high G + C content of D4Z4 arrays (73%). In this study, we optimized conditions for molecular diagnosis of FSHD with a 1-kb D4Z4 subfragment probe after hybridization with p13E-11. We demonstrate that these hybridization conditions allow the identification of FSHD alleles with deletions of the genomic p13E-11 sequence and aid in determination of the nonpathogenic D4Z4 arrays at 10q. Furthermore, we show that the D4Z4-like sequences present elsewhere in the genome are not tandemly arranged, like those at 4q35 and 10q26.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.