Abstract
AbstractCompatible finite‐element discretisations for the atmospheric equations of motion have recently attracted considerable interest. Semi‐implicit timestepping methods require the repeated solution of a large saddle‐point system of linear equations. Preconditioning this system is challenging, since the velocity mass matrix is nondiagonal, leading to a dense Schur complement. Hybridisable discretisations overcome this issue: weakly enforcing continuity of the velocity field with Lagrange multipliers leads to a sparse system of equations, which has a similar structure to the pressure Schur complement in traditional approaches. We describe how the hybridised sparse system can be preconditioned with a non‐nested two‐level preconditioner. To solve the coarse system, we use the multigrid pressure solver that is employed in the approximate Schur complement method previously proposed by the some of the authors. Our approach significantly reduces the number of solver iterations. The method shows excellent performance and scales to large numbers of cores in the Met Office next‐generation climate and weather prediction model LFRic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Quarterly Journal of the Royal Meteorological Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.