Abstract
Twenty-five mafic microgranular enclaves of the Lavras Granite Complex in southern Brazil were studied petrographically and geochemically to establish their origin and to investigate the processes involved in their differentiation. Mesoscopic and microscopic textures indicate that they are products of magma mingling between a basic end member of probable mildly alkaline affinity and host shoshonitic and alkaline granitic rocks. The hybridisation process involved at least the following mechanisms: (i) chemical diffusion of volatiles and very mobile elements such as K to the less polymerised liquids, leading to the crystallisation of hydrated mafic minerals; (ii) chemical diffusion of Ti and P to the less polymerised liquids, leading to titanite and apatite crystallisation; (iii) mechanical accretion in the basic magma of early crystallised host granite phases that promoted enrichment of their major constituents and of trace elements with high partition coefficients in these phases; (iv) chemical diffusion of elements such as Rb, Nb, Y, and Yb with high Kd in the major enclave phases, from host magma into the basic enclaves. These processes occurred simultaneously, probably before the dispersion of basic batch magma forming the mafic microgranular enclaves, and caused hybridisation and complex geochemical patterns. The patterns are very different from the linear trends predicted for near-equilibrium systems such as those of magma mixing or fractional crystallisation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.