Abstract
This paper proposes a hybrid-boost learning algorithm for multi-pose face detection and facial expression recognition. To speed-up the detection process, the system searches the entire frame for the potential face regions by using skin color detection and segmentation. Then it scans the skin color segments of the image and applies the weak classifiers along with the strong classifier for face detection and expression classification. This system detects human face in different scales, various poses, different expressions, partial-occlusion, and defocus. Our major contribution is proposing the weak hybrid classifiers selection based on the Harr-like (local) features and Gabor (global) features. The multi-pose face detection algorithm can also be modified for facial expression recognition. The experimental results show that our face detection system and facial expression recognition system have better performance than the other classifiers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.