Abstract

AbstractThe electrical and optical properties of inorganic–organic hybrid light emitting transistors (HLETs) are investigated, which are fabricated using the n‐type semiconductor zinc‐oxynitride (ZnON) as an electron transporting layer and the poly(p‐phenylene vinylene)‐based copolymer, Super Yellow (SY), as the light emitting layer. Additionally, the influence of various source (S)–drain (D) electrodes (Al, Ag, and Au) with different work functions (WFs) (4.1, 4.6, and 5.1 eV, respectively) on the performance of HLETs is studied. In order to increase the rate of hole injection from the metal electrodes and increase hole accumulation at the emissive layer, the use of a molybdenum oxide (MoOx) interlayer is also investigated. As a result, optimized devices using MoOx/Au hole injecting electrodes yield high brightness of up to 3.04 × 104 cd∙m−2 at a low threshold voltage of 4.79 V. This study provides valuable information about the role of the WF of S–D electrodes in HLETs, which may be exploited to improve the device performance of optoelectronic devices in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call