Abstract
AbstractIn this paper, the wavelet analysis was linked to the genetic programming (GP) concept for constructing a hybrid model to detect the seasonality patterns in the rainfall–runoff time process. This approach was used to determine the dominant input variables of an artificial neural network (ANN) rainfall–runoff model via a sensitivity analysis. In this way, the main time series of two variables, rainfall and runoff, were decomposed into some multi frequency time series by the wavelet transform. Then, these decomposed time series were imposed as input data to the GP to optimize the input structure of ANN model. This methodology was utilized in daily and monthly timescale modeling for two watersheds with distinct climatologic regimes. The obtained results were compared favorably to ANN and GP models. The obtained results showed that the proposed model can monitor both short and long term patterns due to the use of multiscale time series of rainfall and runoff data as the GP inputs. Moreover, using the ...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.