Abstract

Hybrid features are presented for speech recognition that uses linear prediction in combination with multi-resolution capabilities of wavelet transform. Wavelet-Based Linear Prediction Coefficients (WBLPC) are obtained by applying 3 and 4-level wavelet decomposition and then having linear prediction of each sub-bands to get total 13 features. These features have been tested using a linear discriminant function and Hidden Markov Model (HMM) based classifier for speaker dependent and independent isolated Hindi digits recognition. 3-level WBLPC features gave higher percentage recognition than LPC features while 4-level WBLPC features using HMM gave the highest percentage recognition for both speaker dependent and independent cases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.