Abstract
Traditional process monitoring methods, such as PCA, PLS, ICA, MD et al., are strongly dependent on continuous variables because most of them inevitably involve Euclidean or Mahalanobis distance. With industrial processes becoming more and more complex and integrated, binary variables also appear in monitoring variables besides continuous variables, which makes process monitoring more challenging. The aforementioned traditional approaches are incompetent to mine the information of binary variables, so that the useful information contained in them is usually discarded during the data preprocessing. To solve the problem, this paper focuses on the issue of hybrid variable monitoring (HVM) and proposes a novel unsupervised framework of process monitoring with hybrid variables including continuous and binary variables. HVM is addressed in the probabilistic framework, which can effectively exploit the process information implicit in both continuous and binary variables at the same time. In HVM, the statistics and the monitoring strategy suitable for hybrid variables with only healthy state data are defined and the physical explanation behind the framework is elaborated. In addition, the estimation of parameters required in HVM is derived in detail and the detectable condition of the proposed method is analyzed. Finally, the superiority of HVM is fully demonstrated first on a numerical simulation and then on an actual case of a thermal power plant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.