Abstract

In this paper, hybrid radio/inertial mobile target tracking for accurate and smooth path estimation is considered. The proposed tracking approach builds upon an Ultra WideBand (UWB)-based positioning algorithm, based on the Linear Hyperbolic Positioning System (LinHPS), with Time Difference of Arrival (TDoA) processing and anchors concentrated on a single hotspot at the center of the environment where the target moves. First, we design an Adaptive Radio-based Extended Kalman Filter (AREKF), which does not require a priori statistical knowledge of the noise in the target movement model and estimates the measurement noise covariance, at each sampling time, according to a proper LookUp Table (LUT). In order to improve the performance of AREKF, we incorporate inertial data collected from the target and propose three “hybrid” radio/inertial algorithms, denoted as Hybrid Inertial Measurement Unit (IMU)-aided Radio-based EKF (HIREKF), Hybrid Noisy Control EKF (HNCEKF), and Hybrid Control EKF (HCEKF). Our results on experimentally acquired paths show that the proposed algorithms achieve an average instantaneous position estimation error on the order of a few centimeters. Moreover, the minimum target path length estimation error, obtained with HCEKF, is on the order of 6% and 1% for two paths with lengths equal to approximately 17 m and 46 m, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.