Abstract

Visual servoing (VS) control has seen wide adoption in harvesting robots. However, parameter calibration is cumbersome, which makes the use of VS robotic systems inconvenient. Besides, dynamic fruits usually lead to a degeneration of control while tracking. To overcome the drawbacks, we present a new image-based uncalibrated visual servoing (IBUVS) control approach, consisting of a hybrid visual configuration and an adaptive tracking controller, referred to as hybrid-IBUVS. Specifically, our hybrid-IBUVS employs an eye-in-hand camera and a fixed red–green–blue-depth camera to construct a hybrid VS system, basing on multiobject detection and edge-computing technologies. Meanwhile, we also propose adaptive laws to online estimate the uncalibrated parameters of the cameras and robot dynamics. Furthermore, our hybrid-IBUVS uses an adaptive tracking controller to guarantee the harvesting robot to track a predefined trajectory to approach a fruit target. By Lyapunov stability theory, asymptotic convergence of the proposed control scheme is rigorously proven. Experimental results demonstrate the effectiveness of the proposed scheme. All shown results supported the research claims.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.