Abstract

In this paper, a novel hybrid tube-triangle plasmonic waveguide (HTTPWG) is presented, which is composed of three high index dielectric nanotubes placed above an equilateral triangular metal with the center corresponding to the three vertices of the triangle. The strong hybridization coupling between silicon dielectric nanotubes and the metallic triangular wedge SPP enables enhanced field confinement inside the gap region as well as long propagation length. The ultrasmall deep-subwavelength effective mode area (λ2/4000) can be realized by gradual modification of the geometric size, which is one-order improvement compared to other hybrid waveguides. Meanwhile, the propagation length of HTTPWG can reach the same order of magnitude as others. Moreover, the effects of actual fabrication errors on the mode properties about HTTPWG indicate that mode properties are also quite tolerant to fabrication deviations. The proposed waveguide can be applied to subwavelength laser devices and optical integrated circuits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.