Abstract

Two new titania-based nanostructures—namely, hexagonally packed titania hoops (HTHs) and modified large compound vesicles (LCVs)—were created in polystyrene-b-poly(ethylene oxide) (PS-b-PEO)/titania microspheres by coupling self-assembly of the asymmetric amphiphilic block copolymers in selective solvents with the sol–gel process of titania. The formation of these nanostructures was induced by solvent evaporation, where the evaporation rate difference between tetrahydrofuran and water, under certain ambient humidity, strongly affects the nanostructure resulted by changing the force balance, principally involving the stretching of the PS blocks, the surface tension between the PS and the surrounding solvents, and the repulsive interactions among the PEO chains. When the relative humidity of the evaporation process was controlled at 67%, a modified LCVs structure was formed involving a morphology evolution initially from lamellae to large polydisperse vesicles and then to modified LCVs. As the relative humi...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.