Abstract

Abstract: Ambient system identification in noisy environments, in the presence of low‐energy modes or closely‐spaced modes, is a challenging task. Conventional blind source separation techniques such as second‐order blind identification (SOBI) and Independent Component Analysis (ICA) do not perform satisfactorily under these conditions. Furthermore, structural system identification for flexible structures require the extraction of more modes than the available number of independent sensor measurements. This results in the estimation of a non‐square modal matrix that is spatially sparse. To overcome these challenges, methods that integrate blind identification with time‐frequency decomposition of signals have been previously presented. The basic idea of these methods is to exploit the resolution and sparsity provided by time‐frequency decomposition of signals, while retaining the advantages of second‐order source separation methods. These hybrid methods integrate two powerful time‐frequency decompositions—wavelet transforms and empirical mode decomposition—into the framework of SOBI. In the first case, the measurements are transformed into the time‐frequency domain, followed by the identification using a SOBI‐based method in the transformed domain. In the second case, a subset of the operations are performed in the transformed domain, while the remaining procedure is conducted using the traditional SOBI method. A new method to address the under‐determined case arising from sparse measurements is proposed. Each of these methods serve to address a particular situation: closely‐spaced modes or low‐energy modes. The proposed methods are verified by applying them to extract the modal information of an airport control tower structure located near Toronto in Canada.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call