Abstract

In this study, poly(acrylic)/SiO2/EuL3 x 2H2O hybrid thin films were prepared from various acrylic monomers (MMA and EDMA/TMPTA), lanthanide metal complexs (EuL3 x 2H2O, L = pyridine carboxylic acid), and monodispersed colloidal silica with a coupling agent, 3-(trimethoxysilyl)propyl methacrylate (MSMA). It was a combination of the sol-gel reaction, thermal polymerization, and spin coating. The EuL3 x 2H2O content in the hybrid thin films was fixed at 0.05 g and silica content was varied from 10 to 50 wt%. TEM results showed that both SiO2 and EuL3 x 2H2O were well dispersed in the hybrid thin films without aggregation. PL spectra showed the unique emission of Eu3+. The addition of SiO2 made the compounds of Eu3+ disperse better and diminished the effect of concentration quenching. UV-Vis spectra and n&k analysis showed that the hybrid thin films had good transparency in visible light. Besides, the refractive index of hybrid thin films could be effectively controlled through the different ratio of SiO2 to EuL3 x 2H2O. TGA and DSC analysis indicated that the temperature of pyrolysis and T(g) increased with the increase in the SiO2 content. The results of SEM, SCMS, and AFM also showed that the hybrid thin films which prepared from the poly-functional acrylate had a flatter surface than those obtained from the single functional acrylate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.