Abstract

A hybrid approach is described that enhances the performance of an underwater optical ranging system. This approach uses high-frequency modulation and a spatial delay line filter to suppress unwanted backscatter. A dual frequency approach is also implemented to reduce the effects of forward scatter and remove the ambiguity associated with using the phase of the single, high-frequency modulation envelope to measure range. Controlled laboratory experiments were conducted to evaluate the effectiveness of the hybrid technique to reject multiple scattered light and improve range precision. The experimental results were compared with data generated from a theoretical model developed to predict the performance of the technique as a function of system and environmental variables. Model and experimental results are shown that reveal the ability of the approach to provide accurate ranging to an underwater object in a variety of water environments. Model predictions also indicate that advancements in transmitter and receiver technology will extend the range and improve the accuracy of the technique beyond what has been achieved thus far.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.